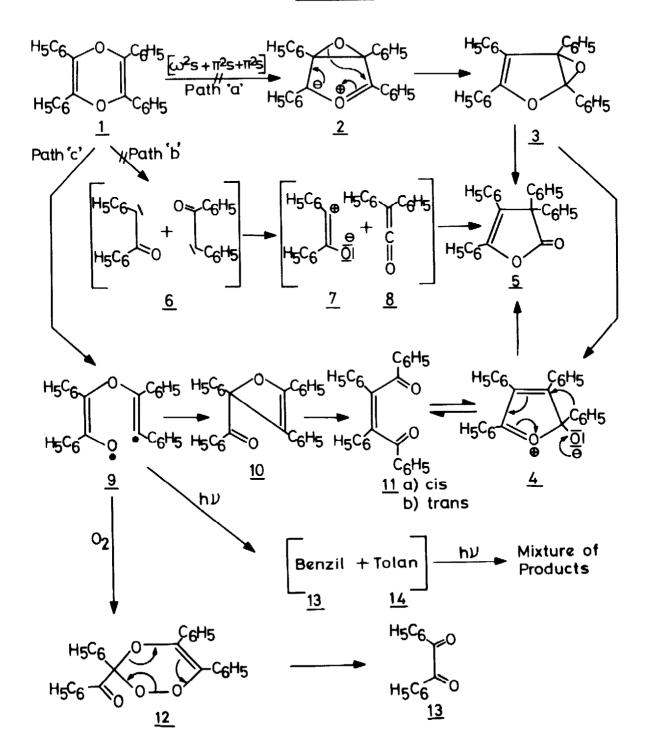
Tetrahedron Letters No. 26, pp 2259 - 2262, 1976. Pergamon Press. Printed in Great Britain.

THERMAL AND PHOTOCHEMICAL TRANSFORMATIONS OF TETRAPHENYL-P-DIOXADIENE

S. Lahiri, V. Dabral and M. V. George Department of Chemistry Indian Institute of Technology, Kanpur Kanpur 208016, India

(Received in UK 9 April 1976; accepted for publication 17 May 1976)

Berger and Summerbell¹ observed that the thermolysis of tetraphenylp-dioxadiene (<u>1</u>) around 250° gives a 90% yield of 2,2,3,4-tetraphenyl-3buteno-4-lactone (<u>5</u>). Zinin² had earlier shown that the same lactone <u>5</u> is formed a nearly quantitative yield in the thermolysis of cis-dibenzoylstilbene (<u>11</u>a). The thermal transformation of <u>1</u> to <u>5</u> has been assumed to proceed through intermediates like <u>2</u>, <u>3</u> and <u>4</u>, as per path 'a' in Scheme 1. In the present investigation we have examined the thermal and photochemical transformations of <u>1</u> to understand the mechanistic details of these reactions.


Although the thermolysis of $\underline{1}$ in the absence of any solvent at 250° has been reported to give exclusively the lactone $\underline{5} (90\%)^1$, we have found that actually a mixture of products consisting of both the lactone $\underline{5} (84\%)$ and cisdibenzoylstilbene ($\underline{11}$ e, 10%) is formed on neat heating of $\underline{1}$ at 260° for 45

Tempera- ture (°C)	Time (hr)	Recovered starting material (%)	Products (%)		
			Lactone (<u>5</u>)	cis-Dibenzoyl- stilbens (<u>11</u> a)	Benzil (<u>13</u>)
110	45	81	-	-	10*
180	38	8	-	82	16*
180	45	5	-	B1	24*
180	50	-	3	79	30*
210	20	-	91	8	-
260	<u>3</u> 4	-	84	10	-
	ture (°C) 110 180 180 180 210	ture (°C) (hr) 110 45 180 38 180 45 180 50 210 20	ture (hr) starting material (%) 110 45 81 180 38 8 180 45 5 180 50 - 210 20 -	ture (*C) lime starting material (5) Lactone (5) 110 45 81 - 180 38 8 - 180 45 5 - 180 50 - 3 210 20 - 91	ture (hr) time starting material (%) Lactone cis-Dibenzoyl- (5) 110 45 81 - - 180 38 8 - 82 180 45 5 - 81 180 50 - 81 - 180 50 - 81 - 180 50 - 91 8

Table 1. Thermolysis of Tetraphenyl-p-dioxadiene at Different Temperatures

^T The higher yields of benzil are due to the air-oxidation of <u>1</u>.

Scheme 1

minutes. When the thermolysis of $\underline{1}$ however, was conducted at lower temperatures, in different solvents under reflux, an increase in the yield of cisdibenzoylstilbene has been observed. Table 1 lists the results of these studies. In refluxing toluene (110°) for example, a 10% yield of benzil (<u>13</u>) was obtained after 45 hr. Most of the starting material (81%) was recovered unchanged under these conditions. In refluxing <u>o</u>-dichlorobenzene (180°), on the other hand, <u>1</u> gave mainly cis-dibenzoylstilbene (<u>11</u>a). Also, small amounts of benzil were formed in these reactions. When <u>1</u> was refluxed in nitrobenzene (210°) for 20 hr, a 91% yield of the lactone <u>5</u> and a 8% yield of <u>11</u>a were obtained.

The formation of the lactone 5 in major amounts, both in refluxing nitrobenzene (210°) and on direct heating (250°) would suggest that at higher temperatures, 1 is ultimately converted to 5. If the reaction is proceeding through path 'a', then the carbonyl ylide 2 formed through a $[w^2s + \pi^2s + \pi^2s]$ reaction may undergo conversion to the furan epoxide 3, which can subsequently be converted to 5 either directly through a dyotropic rearrangement or in a step-wise process involving the zwitterionic intermediate 4. Our attempts to trap 2, employing dimethyl acetylenedicarboxylate (DMAD) have been unsuccessful. An alternative mode of transformation of 1 would be through path 'b' involving the formation of the ketocarbene 6, followed by the cycloaddition between 7 and 8, intermediates generated from 6. The fact that the ketocarbene 7 could not be trapped by dipolarophiles like DMAD and also the intramolecular nature of the transformation of 1 to 5 would rule out path 'b' for this reaction.

The most reasonable route for the conversion of <u>1</u> to <u>5</u> seems to be through path 'c', involving the homolytic cleavage of <u>1</u> to give the diradical species <u>9</u>, which can subsequently be transformed to <u>11</u> a through the oxete intermediate <u>10</u>. Electrocyclic ring-closure of <u>11</u> a would give rise to the zwitterionic intermediate <u>4</u>, which is rearranged to <u>5</u>.³ The fact that <u>11</u> a is formed as the major product when <u>1</u> is refluxed in <u>0</u>-dichlorobenzene would strongly support this mechanism. Further, we have shown in a separate experiment that <u>11</u>a is converted to the lactone <u>5</u> in a 96% yield, on refluxing in nitrobenzene for 20 hr.

If an intermediate like 9 is involved in the transformation of 1, then its formation should be more prominent under photochemical conditions. Photolysis of <u>1</u> in benzene under nitrogen atmosphere for $2\frac{1}{2}$ hr gave a mixture of products consisting of benzil (13, 30%), tolan (14, 1%) and trans-dibenzoylstilbene (<u>11</u>b, 1.7%), besides 53% of the unchanged starting material. When the photolysis of 1 was carried out in presence of air for $\frac{1}{4}$ hr, a 70% yield of benzil was obtained, besides 20% of the unchanged starting material. Photolysis of 1 for 10 minutes under oxygen atmosphere gave a 60% yield of benzil. However, the photolysis of $\frac{1}{2}$ for $\frac{1}{2}$ hr under oxygen bubbling gave a 6% yield of benzil and a complex mixture of products, identical to the products obtained in the photolysis of benzil⁴ and tolen.⁵ Photolysis of 1 in t-butanol for 1/4 hr however, gave a 56% yield of benzil and 4% tolan, besides 33% of the unchanged starting material. It appears that under photochemical conditions, the initially formed diradical intermediate 9, undergoes fragmentation to give benzil and tolan, which are further transformed to a complex mixture of products.^{4,5} The formation of small amounts of transdibenzoylstilbene (11b) in the photolysis of 1 in benzene would suggest that a small fraction of <u>9</u> may be getting converted to <u>10</u> and subsequently to <u>11</u> under these conditions. The increased yield of benzil when the photolysis of 1 is carried out in presence of air may be rationalized in terms of peroxy intermediates like 12 (Scheme 1).

References

1.	D. R. Berger and R. K. Summerbell, J. Org. Chem., <u>24</u> , 1881 (1959).
2.	N. Zinin, Ber., <u>5</u> , 1104 (1872).
	For examples of electrocyclic reactions of heterotrienes, see K. B. Sukumaran, Ph.D. Thesis, IIT, Kanpur (1974).
4.	a) D. L. Bunbury and C. T. Wang, Can. J. Chem., <u>46</u> , 1473 (1968); b) D. L. Bunbury and T. T. Chuang, Can. J. Chem., <u>47</u> , 2045 (1969); c) D. L. Bunbury and T. M. Chan, Can. J. Chem., <u>50</u> , 2499 (1972).

5. G. Büchi, C. W. Perry and E. W. Robb, J. Org. Chem., 27, 4106 (1962).